Functional Neuroanatomy of Emotion: A Meta-Anlaysis of Emotion Activation Studies in PET and fMRI

Citation: Phan, K. L., Wager, T. D., Taylor, S. F., Liberzon, I.. (2002). Functional Neuroanatomy of Emotion: A Meta-Anlaysis of Emotion Activation Studies in PET and fMRI. NeuroImage 16:331-348

Full Text


Neuroimaging studies with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have begun to describe the functional neuroanatomy of emotion. Taken separately, specific studies vary in task dimensions and in type(s) of emotion studied and are limited by statistical power and sensitivity. By examining findings across studies, we sought to determine if common or segregated patterns of activations exist across various emotional tasks. We reviewed 55 PET and fMRI activation studies (yielding 761 individual peaks) which investigated emotion in healthy subjects. Peak activation coordinates were transformed into a standard space and plotted onto canonical 3-D brain renderings. We divided the brain into 20 nonoverlapping regions, and characterized each region by its responsiveness across individual emotions (positive, negative, happiness, fear, anger, sadness, disgust), to different induction methods (visual, auditory,
recall/imagery), and in emotional tasks with and without cognitive demand. Our review yielded the following summary observations: (1) The medial prefrontal cortex had a general role in emotional processing; (2) fear specifically engaged the amygdala; (3) sadness was associated with activity in the subcallosal cingulate; (4) emotional induction by visual stimuli activated the occipital cortex and the amygdala; (5) induction by emotional recall/imagery recruited the anterior cingulate and insula; (6) emotional tasks with cognitive demand also involved the anterior cingulate and insula. This review provides
a critical comparison of findings across individual studies and suggests that separate brain regions are involved in different aspects of emotion.