Laterality and Stimulation Bias in Meta-analysis of Placebo Responses

To the Editor—Zunhammer et al. claim that the effects of placebo are small in terms of changes in bottom-up nociceptive processing based on an analysis of participant-level neuroimage contrast maps from 603 healthy participants in 20 placebo pain imaging studies. We commend the authors and the contributing groups for sharing their findings. However, we have found a bias in how they analyzed this source. Briefly, they computed the dot product of individual placebo contrast images with a predefined weighted set of brain regions called the neurological pain signature (NPS). From this computation, they calculated the effect size (Hedges’ g) within each of the 20 placebo studies. Their results indicated a large effect for noxious stimulation ($g = 2.30$) on the NPS outcome and a moderate effect of placebo on pain ratings ($g = -0.66$), but only weak evidence that placebo altered the NPS ($g = -0.08$).

The NPS is based on 4 functional magnetic resonance imaging studies on healthy controls, encompassing pain, social exclusion, and remifentanil infusion manipulations. The 4 studies used thermal pain delivered to the left forearm, thus biasing the NPS to the right hemisphere. In the meta-analysis, 9 studies (45%) applied pain to a left limb (6 to the forearm, 2 to the hand, and 1 to the middle finger), 6 (30%) applied pain to a right limb (3 to the forearm, 2 to the calf, and 1 to the wrist), and 5 (25%) used midline or left and right pain stimuli (2 on rectal distension, 1 on hands, 1 on arms, and 1 on feet). Segregating the obtained placebo effect sizes on the NPS by left-sided, right-sided, and midline/bilateral pain stimulation, indicates a larger effect size on left-sided ($g = -0.09$) and midline/bilateral studies ($g = -0.09$) than on right-sided studies ($g = -0.05$). Similarly, segregating the effect sizes by stimulation type indicates a larger effect for heat/laser (15 studies [75%]; $g = -0.08$) and electrical stimulation (3 studies [15%]; $g = -0.11$) than rectal distention (2 studies [10%]; $g = 0.01$). Thus, by using NPS, which does not account for stimulation site or type, the magnitude of the placebo effect on bottom-up nociceptive processes is likely underestimated.

Clas Linnman, PhD
Leon Morales-Quezada, MD

Author Affiliations: Spaulding Rehabilitation Hospital, Charlestown, Massachusetts.

Corresponding Author: Clas Linnman, PhD, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, MA 02129 (clinnman@partners.org).

Published Online: May 20, 2019. doi:10.1001/jamaneurol.2019.1229

Conflict of Interest Disclosures: None reported.
